Search results for "Coupling Regime"
showing 2 items of 2 documents
Single-step arbitrary control of mechanical quantum states in ultrastrong optomechanics
2015
We describe how ultrastrong interactions in optomechanical systems can be used to force the system ground state to evolve into an arbitrary quantum state of mechanical motion in a completely controlled and deterministic manner. If the target quantum state is a superposition of $N$ Fock states, it can be obtained by applying in single-step $N$ classical optical signals of different frequencies for a common time interval. This protocol can be applied to various strongly interacting quantum systems as trapped ions beyond the Lamb-Dicke regime and cavity QED into the ultrastrong coupling regime.
Output Field-Quadrature Measurements and Squeezing in Ultrastrong Cavity-QED
2015
We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling rates comparable or larger then the cavity resonance frequency, the standard input–output theory for optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible amount of output squeezing, even if the system is in its ground state. Here we show that…